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ON THE LOCAL REGULARITY THEORY FOR THE MAGNETOHYDRODYNAMIC EQUATIONS

Dieco CHAMORRO FERNANDO CORTEZ Jiao HE OSCAR JARRIN

ABSTRACT. Local regularity results are obtained for the MHD equa-
tions using as global framework the setting of parabolic Morrey spaces.
Indeed, by assuming some local boundedness assumptions (in the
sense of parabolic Morrey spaces) for weak solutions of the MHD
equations it is possible to obtain a gain of regularity for such solu-
tions in the general setting of the Serrin regularity theory. This is the
first step of a wider program that aims to study both local and partial
regularity theories for the MHD equations.
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1 INTRODUCTION
In this article we study local regularity results for the incompressible 3D Mag-
netohydrodynamic (MHD) equations which are given by the following system:

—

it = At — (i V)i + (b- V)b — Vp+ f,  div(ii) = 0,

)
Sy

-,

Ob=Ab—(@-V)b+ (b-V)i+g, div(b) =0, (1)
@(0,x) = do(x) and b(0,z) = bo(x), div(iy) =0, div(by) =0,

where @,b : [0,T] x R3 —s R3 are two divergence-free vector fields which rep-
resent the velocity and the magnetic field, respectively, and the scalar function
p: [0,7] x R? —s R stands for the pressure. The initial data @, by : R3 — R3
and the external forces f, G:[0,T] x R® — R? are given and for the external
forces we will always assume that they belong to the space L?H}.

The system describes the motion of fluids under the presence of a magnetic
field and it is used to study many types of conducting fluids such as plasmas,

liquid metals or electrolytes. These general equations appear very naturally in
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2 DI1EGO CHAMORRO FERNANDO CORTEZ Ji1A0 HE OSCAR JARRIN
many applicative fields as geophysics [13] or astrophysics [16].

In this article we are mainly interested in a mathematical study of theses
equations. Indeed, if Q C [0, +oo[xR? is a bounded set, we will say that the
couple (@,b) € L°L2 N L2HL(Q) satisfy the MHD equations (1) in the weak
sense if for all @, ¢ € D() such that div(F) = div(¢) = 0, we have

— —

(04ii — Aii+ (G- V)i — (b- V)b — fl@)prxp =0,
(b — Ab+ (@- V)b — (b- V)i — §l¢)prxp = 0,

note that if (4, E) are solutions of the previous system, then there exists a
pressure p such that is fulfilled in D'.

It is clear that if the magnetic field b= 0, then the previous equations are
reduced to the classical Navier-Stokes equations

O = AT — (@-V)i—Vp+f,  div(@) =0, (2)

for which some results related to regularity are available. Indeed, let us briefly
recall the Serrin regularity theory for the classical Navier-Stokes system:

THEOREM 1 (LOCAL REGULARITY, [15]) Let Q =la,b[xB(xg,79), with 0 <
a<b xo€R and 0 < ro. Let f € L2HY(Q) for some k > 0, let @ €
LPLA(Q) N L?HLNQ) and p € D'(Q); if we assume that @ is a weak solution
on Q of the Navier-Stokes equations (@ then, if

ie LLE(Q), 3)

we obtain that locally the regularity of W is given by the regularity of the
external force f for every a < ¢ < b and 0 < p < 1o we have that
i € L=(le, b, H**1(B(x0,p))) N L*(lc,b], H***(B(x0,p))). The points of
10, +00[xR3 for which we have the condition (@ for some @ will be called
regular points.

Remark that no particular assumption is needed for the pressure p, which can
be a very general object and this fact is a very important feature of this theory.

REMARK 1.1 Note that the assumption @ € L{°L(Q) stated in (3) can be
generalized. Serrin [15] proved that, if f € L?HX(Q) and if

ieL{LL(Q) with2+32 <1, (4)

then for every a < ¢ < b and 0 < p < 719 we have that U €
L L (e, b{xB(o, p))-
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Important and significant efforts have been made to generalize even more
this hypothesis (3)), see for example [I7], [I8] or [6]. In particular, parabolic
Morrey-Campanato spaces were used by O’Leary [10], see also [I1], [12], to
generalize Serrin’s theorem and we will see how to exploit this framework for
the MHD equations .

It is worth mentioning here that another regularity theory is available for the
Navier-Stokes equations. Indeed, Caffarelli, Kohn and Nirenberg developed
in [3] a second approach, known as the partial regularity theory, which is
essentially based on energy estimates. Of course these two points of view
(local and partial) are quite different since they require different hypothesesﬂ
and since the results obtained are obviously different, however -and this point
is important- a common treatment can be performed by using the framework
of parabolic Morrey spaces. See for example Kukavica [8] for generalization
of the Caffarelli-Kohn-Nirenberg theory in this parabolic setting. One special
feature of this common framework appears to be crucial when studying the
role of the pressure in the Caffarelli-Kohn-Nirenberg theory for the classical
Navier-Stokes equations, indeed, as it is shown in [4], the language of parabolic
Morrey spaces is a powerful tool which allows to mix, in a very specific sense,
these two regularity theories.

Although many studies concerning regularity are available for the MHD
equations (see for example [6], [7] or [9] and the references therein for a
generalization of Theorem [1| and Remark to the MHD equations), tothe
best of our knowledge, a detailed treatment using parabolic Morrey spaces is
missing. Since this framework is important to improve the understanding of
the role of the pressure in these regularity theories, we find interesting to set
up in this article the first step of our approach -given by Theorem [2| below-
that will eventually lead usto a forthcoming work to define new classes of
solutions for the MHD equations .

The plan of the article is the following. In Section[2]we introduce some notation
and we present our main theorem while in Section [3] we recall some useful fact
about parabolic Morrey spaces. Finally, in Section [4] we detail the proof of all
the results stated before. Some classical but useful results are gathered in the
appendix.

2 NOTATION AND PRESENTATION OF THE RESULTS

Before stating the main theorem of this article, we need to introduce some
notation related to parabolic Morrey spaces. It is worth noting here that the
use of these parabolic spaces is actually given by the underlying structure of

n particular, for the Caffarelli-Kohn-Nirenberg theory some information is needed for
the pressure p, which is not the case for the Serrin theory.
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4 Dieco CHAMORRO FERNANDO CORTEZ JiA0 HE OSCAR JARRIN

-,

the MHD equations: indeed, in one hand we have that if (@, p,b) is a solution
of (1), then for A > 0 the triplet AZ(A2t, Az), A2p(A2t, Az) and Ab(A2t, Az) is
still a solution of the MHD equations and this remark will lead us to a very
particular dilation structure. On the other hand, when studying existence for
these equations, we can see the system as a nonlinear perturbation of the
heat equation and thus the properties of the heat kernel h(+/, ) must also to
be taken into account. It is thus natural to consider the homogeneous space
(R x R3,d, 1) where d is the parabolic quasi-distance given by

d((t,2), (s,)) = |t — 5| + |z — ], (5)

and where p is the usual Lebesgue measure du = dtdx. Remark that the
homogeneous dimension is now @ = 5. See [5] for more details concerning the
general theory of homogeneous spaces.

Now for 1 < p < g < 400, parabolic Morrey spaces Mtp’f are defined as the set
of measurable functions @ : R x R® — R3 that belong to the space (LYL2);,.
such that [|g]|ppa < +00 where

1
- 1 . i
18]l azpa = sup (5@—) / / <p(t,:c)|pd:cdt> . (6)
' xo€R3,toeR,r>0 \ T a [t—to|<r? J B(zg,r)

Remark that we have M{;’ = L{LE. In Section [3| we will present some useful
properties of these spaces.

As we are interested in studying local regularity properties of the solutions
of the MHD equations (1]), in what follows we will always consider here the
following subset of |0, +oo[xR3:

Q =Ja,b[xB(zo,7), with 0<a<b< 400,20 € R*and 0 < r < 4o00. (7)

The main theorem of this article reads as follows.

THEOREM 2 Let ﬁo,go : R?® — R3 such that 12'0,50 € L*(R?) and div(iio
div(go) = 0 be two initial data and consider two external forces f,
[0, +00[xR3 — R? such that f,g € L2([0, +oo[, H'(R3)).
Assume that p € D'(Q) and that @,b : [0, +00[xR3 — R are two vector fields
that belong to the space

LOO(]CL7 b[v L2(3<x0’ ’I“))) n L2(]a7 b[v Hl(B('TW T)))? (8)

such that they satisfy the MHD equations over the set ) given in @

) =
g :

If moreover we have the following local hypotheses

1qt € Mgg,qa(R X Rg) with 2 < pg < qo,5 < qo < +00

(9)

1obe MY (R X R with 2 <p1 < 1,5 < 1 < 400,
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ON THE LOCAL REGULARITY THEORY FOR THE MHD EQUATIONS 5

and p1 < po, @1 < qo, then, for all a, B such that a < a < B < b and for all p
such that 0 < p < r, we have

ii € L (Ja, B, L(B(wo, p))) and b€ L% (Ja, B, L (B(x0, p)))-

Note that once we have this result -and observing that the parameters above
satisfy the condition — we can thus apply Remark to obtain that we actu-
ally have , be (L§° L)1 and then, by the Serrin theory stated in Theorem
in the context of the MHD equations [2], we will deduce local regularity for the
solutions of the MHD equations.Moreover, note that Theorem [2| generalizes to
the coupled setting of the MHD equations the result obtained by M. O’Leary
in [1I0] for the incompressible Navier-Stokes equations.

3 USEFUL PROPERTIES OF PARABOLIC MORREY SPACES

We state here some results that will be frequently used in the sequel. The first
one is just a consequence of Holder’s inequality.

LEMMA 3.1 Iff,g’: R x R3 — R3 are two function that belong to the space
MP1(R x R?) then we have the inequality

179,59 < Ozl

t,x

Our next lemma explains the behaviour of parabolic Morrey spaces with respect
to localization in time and space.

LEMMA 3.2 Let Q be a bounded set of R x R3 of the form given in @ If we
have 1 < pg < p1,1 < po < qo < q1 < +oo and if the function f : RxR? — R3
belongs to the space ij}v’ql (R x R3) then we have the following localization

property B )
”]le”Mff;‘qO < OHfHM{{;«n.

Let us now introduce, for 0 < a < 5, the parabolic Riesz potential Z, of a
locally integrable function f: R x R® — R? which is given by the expression

S 1
nhe = [ | o e vds (0

As for the standard Riesz Potential in R?, we have a corresponding boundedness
property:

LEMMA 3.3 (ADAMS-HEDBERG’S INEQUALITY) If 0 < a < %, l<p<g<

+o00 and f € M (R x R?) then for X =1— L (which verifies 0 < X\ < 1) we
have the inequality

— —

HIa(f)”M%% < CHf”Mff

ta
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6 Dieco CHAMORRO FERNANDO CORTEZ JiA0 HE OSCAR JARRIN

See [I] for a proof of this fact. From these general lemmas we will now deduce
two specific results that will be helpful in our computations.

COROLLARY 3.1 Let §2 be a bounded set of the form given in @ If2 <p<g,
5<4q, and f € M2 (R x R?), then we have

—

1) 1aT1(f) € M5 (R x B®), with A =1~ 45 (remark that 0 < A < 1),

2) 167, (f) € M7 HR xR?), where o = min(§, q) with the same X as before.

PRrROOF. For the first point, it is enough to notice that since 2 < p < g and
5 < q<6 wehave 20 <\ where A =1 — % and § = 1 — {5. Thus, applying
Lemmas B.2] and B3] we have:

— —

LeZi(HIl,,z.¢ < CITLNI |, 2

tx t

¢ <C |
1268 M

]
!
wofs
t\;\u::

& ol

ta

For the second point, since we have 0 = min(¥,¢) < £ and ¢ < {, by Lemma

>3

we can write H]IQL(JF)HMW < |1aZy (/)] S and it only remains to
o t,x
apply the first point just proved. |

COROLLARY 3.2 Let §2 be a bounded set of the form given in (@ If2<p<gq,
— P g
5<qand f € M??(R xR?), then we have

—

1oTx(1of) € M7I(R x R?),

— i . _ -5
where o = min(§, q) with A =1 — 1157'

PRrROOF. Notice first that we cannot use Lemma directly since we are
dealing here with the Riesz potential Z, with a = 2 > ﬁ. To overcome this

—

gap we will exploit the double localization of the function 1Zs(1qf). Indeed,
observing that o = min(%, q) < ¢, we can write by Lemma

= =

LoZo(Lof)lage < ClllaZa(Laf)ll g

Consider now a parameter ¢ such that § < % < % and such that ¢ is close

5 ) min(%,5)
enough to 3 so that we have 2575 > 2575 > @ thus we have by Lemma
3.2 |10 (Lof)||pee < C|Za(Laf) min(2.5) 5 - Since now we do have
e M, L2075 12875
t,x

the condition 2 < %, by Lemma we deduce the inequality

=

1Z2(1a f)

| min(%,é) 5 S CH]IQ]FH min(%,é),é'
N 2075 12875 M, .

t,x
It is enough to remark that min(Z,6) < Z and that 6 < £ to obtain

27 2 2
12 f1 mincgrs < CIFIl 5 .g and the Corollaryfollows. [

ta

M.
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4 PROOF OF THEOREM

The first thing to do is to define our framework, thus from a general parabolic
ball Q of the type that will be fixed once and for all, we consider the two
following subsets:

Qo =l Blx B(ao,p) and Q:}Q“”f{f}(?) (1)

and remark that since 0 < a < a < f < band 0 < p < r, we have the inclusion
Qo C Q1 C . (12)
Note in particular that the conclusion of Theorem [2]is given over the subset Q.

Observe also that since we are working in a local setting, due to the localization
property stated in Lemma and with no loss of generality we may assume
in hypothesis (@ that we have 5 < qp,q1 < 6.

Once our framework is clear, in order to prove Theorem [2] we will use the
following strategy: we define two technical parameters 0 < Ag, A\; < 1 such

that
qo — 9 q1—9

)\0:1— and /\1:1— 5 13
9o 5q1 (13)

and we prove that we have
lo,@ € MY (R x R%), 1g,be€ MJL" (R x R?), (14)

where 09 = min %7(10} and o; = min %,ql}. Now if holds, then by
iteration we will be able to obtain

Lo,@ € M = LPL®, 1g,be MiL" = LPLY, (15)

which is the conclusion of Theorem Indeed, if we have at our dis-
posal estimates (14), theniterating the same arguments we will ob-

tain Lo,@ € M,V (R x RY), 1gb € M;V"(R x R3), where
T0,1) = min{i—g,qo} = min{’;—%,qo} and o(1,1) = min{%,ql} = min{%,ql},

then observing that we have lim % = 4+oo and lim f\% = +00, we obtain
n——+oco 0 n—+o00 "1
(15).

Now, to prove we introduce two test functions ¢, : R x R® — R that
belong to the space C§°(R x R3) and such that

p=1onQy and supp(¢) C Qy, (16)

p=1on; and supp(p) C Q. (17)
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8 Dieco CHAMORRO FERNANDO CORTEZ JiA0 HE OSCAR JARRIN

These functions satisfy two important facts: first we have ¢(0,-) = ¢(0,-) =0
and second due to the inclusions stated in we have the identity ¢ = ¢ in
the whole space.

We define now U = ¢u and B = qbg. As long as we are interested in the
behavior of & and b inside the set £y and with the properties of the localization
functions ¢ and ¢ defined above, we can write

. 1 1 3

U = o (AA(aSﬁ)) = (A (st— (Ao)u + 2281-((8@)17))) ;
, 1 - 1 . . 3

B = o (AA(¢b)> = (A <¢Ab— (A¢)b+2;8i((8i¢)5)>> .

Thus, verifying amounts to prove that U € M79% and Be M " and for
this we will first study in the expressions above the terms where the Laplacian
does not act directly over the functions « and b. More precisely if we define
the quantities

T (i(gbAﬁ)) and W = o (i(qmz?)) , (18)

we will study in the next lemma the behavior of the quantities U—V and B—W
and we will prove that locally they belong to the parabolic Morrey spaces we
are looking for.

PROPOSITION 4.1 Under the notation , assume b < qog < 6 and let og =

min{%2,qo}, then we have 10U -V) e M7 (R x R®). Symmetrically, if
5<q <6 andifor = min{§, ¢} then we have 1o(B-W) e M7y (RxR3).

PROOF OF PROPOSITION .1l We claim first that
3
- 1
U-V=¢ (A <_(A¢)ﬁ+ 2231«((3@)17))) € L>(]0, +oo[, LS(R?)). (19)
=1

Indeed, recall that @ €  L*(]a,b,L?(B(xo,7))) hence @ €
L>(Ja,b[, L3 (B(zq,7))) and by definition of the test function ¢ we have
(Ag)i € L>(]0,+oo[, L5 (R?)) thus, recalling that we have by duality the
embedding L5 C H~!, we obtain

(Ag)ii € L=(]0,+oc], H'(R?)).
Moreover, as @ € L (|a, b], L2(B(zo,7))), for any 1 <i < 3, we have (9;¢)u €
L>(]0, +o0[, L?(R?)), which results in
3
> 0:((&:0)7) € L=(10, +ool, H ™ (RY).
i=1
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With the two informations above, we get

3
1 .
¢<A<—m¢m+2§:&«&@m>>eL@QQ+mLH%R%y

i=1
Hence, is verified by the Sobolev embedding H*(R?) ¢ L°(R?). Once we
have U — V € L°LS, by the assumption 5 < g < 6 and by the localization
property given in Lemma we have 1o(U — V) € LP LY = M{9% and
this conclusion is enough for our purposes. However, let us note that, since
oo = min{§%, g0} < qo, the fact Lo(U — V) € M72" (R x R3) also follows
from Lemma 3.2l To finish, remark now that as we have the information
b € L*(Ja,b, L*(B(zo,r))) and oy = min{{*,q1} < q1 < 6, the proof of the
fact 1g(B — W) € M7y (R x R?) follows the same lines. |

Once we have Proposition for the differences U — V and B — W, it remains
to show that the quantities V and W defined in belong to the parabolic
Morrey spaces M/ % and My, . For this we will use the equations satisfied
by these objects V and W, but these dynamics involve the pressure p for which
we do not have any information (recall that p € D) and we need to get rid of
this term, however, as we are working in a local setting we can not just apply
the Leray projector and it will be more convenient to work with the vorticity

G=VAd,
and with the current .
=V AD,
and with the equations satisfied by these two variables, which do not involve

the pressure anymore: indeed if we apply the curl to the system and since
V AVp = 0 we will obtain the dynamics for & and p'where there is no pressure.

The link between the variables \7, W defined in above and the functions
W, p'is given by the following property: if we localize properly the vorticity &
and the current p; then due to the support properties of the localizing functions
and by Lemma in the Appendix, we obtain (locally) the identities

<u
[

_@<i@ﬁAwﬁD):—¢(i¢a> and (20)

=
Il

1, = 1 =
—p (A(¢V A (@ﬁ))) =—¢p <A¢ B) ;
where U := V A (¢&) and B := V A (pp). Thus in order to study V and W
we shall first obtain some properties on the variables U and B since once we

obtain information them it will be easy to deduce information for V and W.
Note that the dynamics for &/ and B can be deduced from the initial system
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10 DIEGo CHAMORRO FERNANDO CORTEZ JiA0 HE OSCAR JARRIN
by first apply the curl, by localizing with the function ¢ and by applying
the curl again, we thus obtain the two following equations:

—

Btu = AZ/?

+o (VA (=@ Vya+(E-V)5)) (21)
0B = AB
3
+ VA lw(VAg)+(0t<p+A<p)p—2Z&((3z¢)m (22)

fiemark now th%t by the definition of the localigation _function , we have
U(0,-) =0 and B(0,-) = 0 and thus the variables U and B satisfy the following
parabolic equations:

U =AU+ VAR, B =AB+V AV,
. and ~ (23)
(0,-) =0, B(0,-) =0,
where
11 3
R=) Ri=o(VAF)+ 0+ Ap)5 -2 0i((9ip)d)
= M @ i:1

(3)

(4) . (5) 3(6) (24)
-VA (Z az(souzu)> =20V A bib) =V A <Z<éw>bzb>
i=1 i=1 =1
(7 ®) 9)

(10) (11)
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and
3
Z Vi = o(VAG) + (e + D)5 —2) 8i((0:0))
3 3
—l—Z@ V(p/\(ulb))+€/\<z ) ZV&@ u;b)

3
+ zm@) A (bi@) + V A (Z ai(wbia)> .

i=1 i=1

In the expressions of the quantities R and V given above we have systematically
decomposed the terms (- V)i, (b- V)b, (@- V)b and (b- V)@ of by using
the identity in Lemmal[5.4] In order to simplify the main part of our proof, we
put the proof of the Lemma [5.4] in the Appendix.

Now, using an integral representation we have that the solutions of equations
can be written in the following form

t
a:/ew—sm(ﬁ AR)(s ds—ZV/\/ (=98 (5, ) ds = 3V AT,

0

t t
where we defined Tj = / et=IAR i(s,-)ds and X; = / etV (s, ) ds.
0 0

With these expressions for the variables U and l’;, we remark that in order to
prove that V € M79% and W € M ", due to the identification we only

have to verify that for each T; and Xj, with 7 =1,...,11, we actually have

@(%(WMZ)) € M7 (RxR?) and <p(%(¢§/\f(})) € M7LT (Rx R?).

(25)
The rest of the paper is thus devoted to show and for this we will treat
separately each ones of the previous terms: mdeed Proposition 4.2 studies the
cases j = 1,2, Proposition [£.3]treats the case j = 3 while Propo&tmn@‘oreats
the cases j = 4,5,6,8,9, 10, finally Proposition [£.5 studies the remaining cases,
ie. j=71,11.
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12 DiEGO CHAMORRO FERNANDO CORTEZ Jia0 HE OSCAR JARRIN
PROPOSITION 4.2 Under the above notation, for j = 1,2 we have
1 = 7 70,90 1 Vi X 71,91
® Z((]ﬁv AT;) | € M7y and ® K(d)V ANX;) ) e M7y
PrROOF OF PROPOSITION Let us start with 7. By Lemma since

5 < go < 6 and since oy = min{i—ﬂ,qo} < qo and using the identification
MPP = LY LY, we can write

1, = = L6V AT,
e, < b,
1, - o
< Ollellzgre || 5 @V AT
Lors
L ..
< cHA(qbVATl) < CloV AT o

LSHL

where we used the embedding H' C LS and the properties of the negative
powers of the Laplacian. Now, by the definition of 77, using the embedding
L% C H-' and the Hélder inequality with S=1+1 we write:

16V ATl gz < CloV ATl g S OOV AT s
t x
t
< Csup (;56 /\/ et=9)AR ds
>0 0 L
. -
< Clollmag sup | [ etm2app T g,
T >0 |Jo (=A)z 1
VAR ~
N || ; :OHV/\R1’ 2p -1
(—A)z 1212 L2H;
The last estimate follows from the general inequality
t 1
sup / VA=A Fds|| < CIIF ||z,
t>0 0 L2 t~x

see Lemma in the Appendix. Remark now that since f € L%H; and due
to the properties of the localizing function ¢, we actually have V A Ry =

VA(@(VAf) e L2H;? since
IVAR g1 < Cllo(V A Pllpzr: < Cllfll a0 < 400,

which finally gives ¢ (%(qﬁﬁ/\ﬁ)) € M;y*. For T>, in a similar fash-
ion, since we have by hypothesis @ € L{°L2 N L?H}(Ja,b[x B(xo, 7)) we get
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- —

VARy = VA ((8,590—1— Ap)(V /\ﬁ)) € L?H;" from which we deduce that
< ( )) MUO,qo

The estimates for ¢ (i((bﬁ A X})) follow the same lines. |

PROPOSITION 4.3 We have
Lo\ 7 1 - =
2 (A(qi)V/\Tg)) € M7y and @ <A(¢V/\X3)> e M7L™.

PRrROOF OF PROPOSITION .3l We will detail the first term since the second
term that involvesXj follows the same computations. Indeed, following the
same ideas as previously we have

1l <. = 1, = =
|+ (5672 7)] g <€l (107 )

<C Hw <i(dﬁ A Ts))

6,6
My,

LLG

Let us define now V A T 3= A}_}g, where
3 t 1
Y3 =-2 Z/ e(tfs)AZV A8 ((8;0)@) (s, -) ds.
i=1"0

Using the classical identity ¢(AY3) = A(¢Y3) + (Ag)Ys — 228 0i)Y3), we
i=1
obtain

w(%(dﬁAfs)) = ppYs + o ((A</>Y3)—2Z¢A( z¢)173)-(26)

It remains to treat each term on the right-hand side of equality (26| . For the
first term above, by using Sobolev embedding H'(R3) ¢ L°(R?) and a standard
heat kernel estimate (see Lemma7 we get

ledYsllpors < C||5%||L§°Lg§CHY3||LooH1

< elt=9) ( V A0 ((9; )a)) (s,-)ds
A Lg° A}
< VAa Dip)id)
L312
3
< CZ\I(c‘)iso)wlngLgSCIIﬁHLgH;- (27)

i=1
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For the second term on the right-hand side of , we use the embedding
H' C L% and the embedding Ls Cc H ' to get

[

x

lox (aom)

<c Hi ((20)7)

= CH(A@HQIVBHLQSH

LpLg LH}

< C(A0)1a, 7

6 .
LPLZ

Then, by Hoélder’s inequality with % = % + %, we have

H(A@HQI%‘

L§L§ < Cll(Ag) ||L,?CL3

]191173’

, = C||Ys| 20 e

LSL

and from the previous calculus displayed in we obtain

< Ol g2 0 < +00.
L?Lg t

Hsﬂi ((Aéﬁ)ﬁ%)

For the last term of , we do the same estimates as above. By using the

Sobolev embedding and Hélder’s inequality with 1 = £ + &, we obtain
>y, N3
2 ((9:p) Y < = ((8:9) Y-
;oA (@a)%)| <X |X (@) .
i= L?Lg i=1 tita
3
< C; H(azfﬁ) ]191Y3’ Lora
3
<O N0l s 10T,
i=1 tHx

< ClYsllLgerg < Cllill gz

Thus gathering all the LSLS estimates for , we obtain ¢(x(¢(V AT3))) €
MEOw. m

We continue our study of the terms Y_’; and fj for j = 4,5,6,8,9,10 and for
this we will need to establish some estimates that involve the parabolic Riesz
potencial Z,, defined in .

LEMMA 4.1 Under the notation above, for j = 4,5,6,8,9,10 there exists a
generic constant C > 0 depending only on the size of the set Q =|a, b[x B(zo, 1),
such that the variables T; and X; verify the following pointwise estimates:

1) For j =4,5, |T;(t,z)| < CT,(1gli(t, z)|?) and

|X;(t,2)| < CTi(Lold(t, ) @ b(t, 2)]).
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2) |f6(t,a:)| < C’Ig(]lg|ﬁ(t,x)|2) and |)€6(t,x)\ < CTy(lglu(t,x) ® g(t,x)|)

3) For j=8,9, |T;(t,z)] <CT(1g|b(t,z)|?) and

|1X;(t, )| < CTi(Lald(t, z) ® b(t, x))).

4) |Tho(t, z)| < CTo(1g|b(t, x)|?) and
| X10(t, )| < CTy(Lgli(t, z) @ b(t, z))).

PROOF OF LEMMA [4.I] We detail here only the estimates for the values j = 4
and j = 6 since the proofs of all the other terms follow essentially the same
computations due to their common structure.

e For j = 4, recalling that we have the following expression for the heat
semi-group e!=*)2 f = h,_ % f where h; is the heat kernel, we can write

— t 3 —
Ty(t,z) = /0 et=9)A (Z&(Vg@/\(uﬂ))) (s,x)ds

=1

3 t
3 / Diho s — )V A (usid) (5, y)dyds
: 0o JRr3

3 t
Lol < 3 [ [ 1oheso )] 90 A )5,y
i=170 JR?

By the decay properties of the heat kernel (see Lemma in the Ap-
pendix) and by the support properties of the function ¢, we observe that
we have

T,(t,z)| < C // Vgo/\ w; ) (s,y)| dy ds,
(T, )] Z GV A

now, with the definition of the parabolic Riesz potential Z; given in
and with the boundedness properties of the function ¢ we have:

3
I Ta(t,2)| < O LIV A (wid)]) < CTi(Lgli(t, o) ).

=1

Remember that X4(t, z) has the same expression as Ty (¢, ) by replacing
i by b. So we may use the same technique to show that

[ X4(t,2)| < CTi(Tgli(t, z) @ b(t, x))).
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e For j = 6, recall that we have

— t 3 —
Ts(t,x) = /0 elt=9)a <Z(V8igo)/\(uiﬁ)> (s, x)ds,

=1

and by the same arguments above we can write

3
. 1 .
Thtz)| < C / / : ¥010 A (i) (s, )| dy ds
Dy ) N T v
< OCLy(1gli(t, x))?).

The same computations for Xg(¢,z) lead us to obtain
| Xs(t, 2)| < CIy(Loli(t, z) @ b(t, z)|).
]

Once we have these pointwise estimates, we can continue our study where we
will use the hypothesis on @ and b given in (9).

PRrROPOSITION 4.4 Under the notation above and for j = 4,5,6,8,9,10 we have
1 = al 00,90 1 = e 01,41
® Z(qﬁv NTy) ) € My, and ® Z(QSV NXj)) e M.

PROOF OF PROPOSITION [£.4] As for the previous lemma, we will only detail
here some cases since the proof of the remaining cases follows essentially the
same computations.

e For the term go(%(d)ﬁ A T:;)), we have

Hso(i(WATl)) e = H“’(i(w(‘m)‘WAT‘*))HM%,%
< H@(iﬁA(chl))HMWO
*HW(i%A ) ’M (28)

Let us remark now that the inner structure of the terms cp(%ﬁ A (dﬂi))
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and @(%ﬁgb A ﬂ) is of the following form:

ToslNea) = o (500D ) = o0 +67) (0.0

- C@(t,x)/R TV Gt y) £(t, y)dy;

s |z —yP

Tlf)(ta) = o 500)F) () = ol x @u0)(t.0)
= Colta) [ a0l

where K is the convolution kernel associated to the operator % (namely

ﬁ) and f(t,z) is a component of the vector Ty. At this point we observe
that, due to the support properties of the functions ¢ and ¢, the kernels
associated to the operators 7, ; and 7p; are bounded in L'(R3).Indeed,

for To,:(f)(t, ), we have

o(t,2) /R Y dy = ot ) / i Y G )y < Ca

o |z =yl o [z —yl?

for almost all z € R3 and

o) [ et

X

—Yi Ti —Yi
dx:(j)t,y/got,:r dx < C,,
[z —yf? o) e R =y "

for almost all y € R®. Thus, by Schur’s test, we get || Ta.:llz1 11 < Co.

By the same reason we get || 75|11 1 < Cp. Since the norm of M09
is translation invariant, we deduce that

17a,i(Fllagzoo < Callfllagzomo, N Toi(H)llarzom < Coll fllaggoo-

Applying these observations to the right-hand side of , and keeping
in mind the support of the function ¢ given in we have

1= - - o
o5V A (oTh) < Call6Ti | 70 = Call i, T pyzovao
A M{gquo t,x t,x

and

o(ken)

o S Cl6Tilagy = Calllo Tz
M0 ’ ’

which result in

1 - 3} .
lo(59AT)| < CulltaTillugew+Collin Tillgy- (29)
M09
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Now, using the first point of Lemma the second point of Corollary
Bl and Lemma [3.1] we obtain:

1 "/ r —
le(z@nt)| < CltaTiaalgy
My ,
< Cllta [, .
<

CllLa| |3 g,

thus, by the assumption Lo@ € M75 % (R x R?), we can conclude that
o(%(6V AT)) € M72™ (R x RY),

e For the term ap(%(qﬁﬁ A X4)), we can perform the same computations
as before to obtain

1, = o 1o o
‘SD(AW)V/\XO)H < HSO(AV/\@XH)H
ML M7y
1o o
M;iivql
< Cq ﬂﬂlX4HM,“®“ + G ”]1511X4HM:Y11,11
< Ol Ti(lali(t, 2) @ b(t, 2)|)|[ a7
< COllgli® 5|HM%,%1
< ol [Mafillgpvo

By the hypotheses 1o@ € MPY™(R x R?) and 1ob € MPL™ (R x R?)
with p1 < po, 1 < qo, we finally obtain that @(%(qﬁﬁ A )?4)) €
MPL™ (R x R?).

For the cases j = 6 and j = 10 we can apply the same arguments, the only
modification is given by the use of Corollary in order to study the parabolic
Riesz potential Z,. |

PROPOSITION 4.5 For the remaining terms of , i.e. for j = 7,11, we have
1 = et (e 1 = — o
12 <A(¢V A Tj)) € M7y and @ (A(QW A Xj)> e ML

PROOF OF PROPOSITION We will detail the case j = 7 as the case when
j = 11 follows the same computations.
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Recall that
3

VAT, =— /t VAVA e(t_s)A(Zai(gouiﬁ)) ds
0

i=1

Let V AT 7= A?}, more precisely we have
3 t 1
Yy =— —V AV A2, (puyil) ds.
7 Z/o A e (pu;i0) ds
Doing the same as for , we obtain

e ¢ botlseo b (00

0,490 ‘ 70-490
Mt,:L' Mt,:L'

9
UOv‘lO

‘PA ( 0:9) Y7>

and it remains to study each term separately. For the first term above
we write

IN

3 t
1o =
> e / ZV/\V/\e(t’S)Aai(gouiﬁ) ds
i=1 0
3 t 1. .
Z <p¢/ d;elt=)A <AV AV A (<puﬂ)> ds
0

i=1

lpdY7]l argo 0
s T Mzg=qo

IN

70,40
M5

—

t 1.
Let us study the quantity <p(b/ dielt=9)A (AV AV A (<puﬂ)) ds. We
0

can write
gogb/aet s) ( VA 6/\(30%12)) ds

1~ =
= W/ Oihi—s(x —y) (V AV A (@uiﬁ)) (s,y) dyds,
0 ]R3 A

and due to the support properties of the functions ¢ and ¢, and to the
decay properties of the heat kernel (see Lemma in the Appendix), we
obtain

t 1. .
<p<{)/ Djelt=9)A (AV AV A (gouiﬁ)) ds
0

le o
<tool [ [ 10t =)l | ¥ AT A (o)) duds
R JR3

1 1~
e Je Jeo =l +1e = I
< Clooiz ).
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and with this estimate we have

3 t

1. -
g ap(b/ Dielt==)A <AV AV A (@uiﬁ)) ds
— 0

3
<0y

i=1

70,40
M5

) H 2090
M5

By the localization properties of ¢, the second point of Corollary and
the boundedness of Riesz transforms in Morrey spaces and Lemma [3.1}
we have

1> o
]lQOL (‘ ZV AV A (QD’U,Zl_L')

IN

||S0¢?7HMZ(;QU V/\V/\ (pu;@)

Po 490
M272

C’H1190|u(t x)|||Mpo a0 < 400, (30)

IN

since by hypothesis we have lg,u € M{y% and we thus obtain the
wished estimate for the first term of the rlght hand side of (30 .

For the second and the third term of the right-hand side of , using
the same strategy as in the proof of Proposition (see and )
and with the previous estimate we finally obtain
1 - N
lox ((A6)%) e < Cllta, Vellasgo o
Ol gy (. )| o0 < 00, (31)

A

and
3

a —
1305 (@) %) gy < Clla,Frllgzgs

i=1

< CffLglu(t, x)llle a0 < +00. (32)

Gathering the relations —, we can conclude that each term of (30
is bounded and we have

1 - -
0 <A(¢v A T7)> e M7 (R x R).

Recall that
3

ko= [(GAT IS aoud) ds
0

i=1

Let us define V A X7 := AZ;. As 1gi € M (R x R3) and Lob €
MPL? (R x R?) with po < qo, p1 < g1, p1 < po and q1 < qo the same
calculus can be used to complete our proof. |
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5 APPENDIX

LEMMA 5.1 Let h; be the heat kernel. If o € N3 is a multi-index then we have

|z~ @HeD if |2 > ¢,

= a2 <

See [I4] for a proof of these facts in a general framework.
LEMMA 5.2 If f € L2([0,4+o00[,L?(R3)) and if we define F(t,z) =
¢
/ hi—s * f(s,x)ds then we have
0
IE @ Mg < Clfllzzre-

PROOF OF LEMMA [5.2] We simply write

IR = sw | [ (a)FE s

ol 2<1

- s |[ ] (Y (e # Fls ) dso ()

ol 2<1

t
= sw ([ [ ca)
lollp2<1lJo JR3

< sup /0Hf(sv')”LQH(_A)%(ht—s*¢)||L2d3

ol 2<1

< sup |[[fllzzrzllhe * @l 2 g
llgll L2 <1 o

Nl=

(hi—s * &) f(s,z)dxds

Now remark that we have for the last term above
2 e 2 —2t|€)2 | T e 12
s ol = [ [ lePe e G Pacdr
e 0 R3
oo 2 _—2t|¢|1*| 2 2
L] tepe=eriaie paras

thus, by the change of wvariable 7 = 2t[¢|> we can write

“+o0 R R
e s 612, 0 ~ / / e |3(E) Pdrde = || ]2, which gives
e R3 JO

1o * @l 2y < Clloll L2,

and we finally obtain [|F'(t, )|/ g1 < O/ fllp2L2- |
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LEMMA 5.3 If ¢ is the test function defined in @, if © the test function
defined in and u is a reqular vector field, then we have

o (50@0) = ¢ (5 (67 n17n1)).
ProoF oF LEMMA [5.3] Indeed,
VARV AT = oVAVAGD VA (VAT = (6(m(@)) - Aa’)
+V A (VA
= —pAi+ VoA (VAD).
Moreover, by the support properties of ¢ and ¢ we have ﬁcp =0and ¢gp =1

on the support of ¢. So the second term in the identity above will disappear
when we multiply the identity by ¢ and then we have

—

(VA eV Adl]) = d(—pAii + Vo A (V AiD)) = —Ad.

For the nonlinear terms in the equations, we use the following lemma:

LEMMA 5.4 Let A = (A1, As, A3) and B= (B1, Ba, B3) be two functions such
that div(A) =0 and div(B) = 0. Then,

+ Z Vi) A (AiB) +V A (D 0i(pAB)).

=1

—

PROOF. We write (VA (A-V)B) = VA (o(A-V)B) = VoA ((A-V)B) where
1) =0 w

we study each term in the right-hand side. As div(A) = 0 we can write

3 3

VA(e(A-V)B) = VA(pd> A0B)=

<
>
™
hS)
S5)
N
=

= —VA(Bip)4B)+VA (Z 9;(pA;B)),

=1

where we obtain the second and fourth terms in (33). Then, always as we have
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-,

div(A) = 0 we write

3
~VoA((A-V)B) = -VpA (Z 0i(AiB)) = — Zﬁp N 0;(A;B)

where we obtain the first and third term in . [ |
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